Objectives:
Can You Measure Rail “Friction” using “Simple”, Optical Fiber Doppler Sensors? Yes...or No?

- **NO...**
 - If you mean Measurement of Absolute, Universal or Instantaneous “Friction” or “Traction”.
 - Answer applies to all sensors and technologies.
- **YES!**
 - If you Define “Friction” reasonably for Different “Scales”.
 - If you Seek a “Functional” Index or “Effective Friction” for a Specific Task. (e.g., Push Tribometer, Force L/V Site, etc.)
 - If you assess the measured “Index” or “Friction” parameter over enough distance, time or measurements.

Extended Analyses of '07 TCTI On-Board Data
- Prevailing complication in prior Analyses ('08-'08) is the Vibration Noise Obscuring the Dynamic Data
- Nature of Ladar Data Formats Require Agile, Filter Functions compatible with Excel. Not available till Spring '09
- Filtering allows separation of basic Traction signature from ancillary Noise, Acceleration & Vibrations

RESULT 1: Correlation of Push Tribometer Friction Measurements with On-Board Experimental Results: Slip Speed
- Correlation NOT obtained with Slip Speed unless Friction is Saturated, i.e. out of the Friction Demand Region.
- Correlation NOT obtained with Creepage* except on the basis of Fixed Track Speed

RESULT 2: Lidar Detection of TOR Modifier – Grease (6-12 Feet of Track Lube)
- YES the on-board Ladar can Detect TOR Modifiers
- Robust Detection of TOR Modifiers:
 - Depends on Sufficient Track Distance
 - Magnitude of Change in Traction

RESULT 3: Curves & Special Calibrations
- Averaging Left and Right Wheel Signals allows Tractive Performance Assessments in Curves
- Systems may be Configured and Calibrated for Special Train Configurations e.g., Geometry Cars!

WHY?? - Rail Friction Modeling: Polynomial Chaos Analyses Results for just Two uncertainties

Review: Slip – Friction On-Board Instrumentation Operational Support Courtesy TTCI, Year 3, 2007
- TTCI FAST Loop tests 10/15/07 – 10/18/07, Pueblo, Colorado
- System Deployed in NS3000 Cab
- Optics on-board on TTCI Locomotive NS3000, 40.54” wheel Binder Plate
- Idle Wheel tests NS3000 pulled by BNSF Locomotive
- Optical Locations subject to Displacement and Fixture Pointing Errors
- Steady State Conditions in Test Section(s) function of Human Throttle Factor

Rail Friction Modeling: Polynomial Chaos

- Real Friction Measurements with Onboard System Deployed in NS3000 Cab
- Progressive Lube Exposure

- Coefficient of Slip vs Lube Condition

- Rail/Ground Reference Wheel Beam Locomotive Slip Optics, Right Side, Outside Rail

- lattice of correlation
- wheels at speeds: 50 75 100 120 mph

- data adjusted to “match” at point of inflection

- correlation matrix
- no correlation

- correlation between wheel slip, rail/ground velocity, wheel speed

- correlation between wheel slip, rail/low speed, tangent track

- Creepage = Coefficient of Slip # Speed

Simple Optical Fiber Doppler Sensors for Measurements of Rail Friction

Carvel Holton, Dr. Mehdi Ahmadian, Dr. Corina Sandu, Hyunwook Lee, Dr. Brian Geist

Sponsored by Association of American Railroads

Center for Vehicle Systems & Safety
www.cvess.me.vt.edu

Virginia Tech
Invent the Future